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THE CONDITIONAL LEVEL OF STUDENT'S t TEST' 

BY L. BROWN 

Cornell University 

1. Introduction. Buehler and Fedderson (1963) considered the conditional 
significance level of Student's two-sided t-test and the coverage of the related 
confidence intervals. They conditioned on a subset of the form ~ix/s < c and 
found in one special case (n = 2, ax = .5) that for ainy values of uo and o- the con- 
ditional level of the t-test that the population mean is Ato is smaller than the uncon- 
ditional level. In fact it is strictly smaller than a constant a < ax = .5. (For c = - 

they were able to choose a = .482). Hence the conditional confidence coefficient 
of the coinfidence interval procedure is greater than 1 - a > .5. 
In this note we will show that similar results are valid for Student's two sided 

t-test at all levels and for all sample sizes, n > 2. Also we show that the disparity 
between the conditional and unconditional levels is larger than was previously 
assumed. For example, in the case n = 2, ax = .5- we show that the conditional 
probability of acceptance given Jx /s ? tan ur/S = 22 + 1 is bounded below by . 

In view of the well known optimum properties of the t-test it is not clear that 
the results of this note can possibly lead to any practically useful new procedures. 
(It is not even clear that any remotely reasonable test procedures exist for this 
problem which do not have conditional properties similar to those described 
here.) 

We hope that these results about the t-test vill help add to the general kiiowl- 
edge concerning its characteristics. In particular, let us point out that these 
results are somewhat related to the fact that the usual invariant estimator of a 

is inadmissible (see Brown (to appear)). However it would appear that, if any- 
thing, these results concerning tests depend more stronigly on normality than do 
the results for estimation. 

2. Statement and proof of the main theorem. Let Xi, X2, , X,, n > 2, 
be, indepeindent normal random variables with mean ,u and variance a2. Let 
x = n-1 j.=, xi and n2 = -l , (xi-x)2 Let the (unconditional) rejection 
region for testing ,t = AtO be of the form K = J, s:jt - uol/s > k3. Then the 
level of significance, a = Pr (K I Ao , v), is independent of CT2. Let the "condition- 
ing" set be C = {x,s: 1W/s < c}. 

THEOREM. Suppose c > k/[(1 + k2)1 - 1]. Then there is a constant a < ax such 
that Pr {K I(, s) c C, Mio, 21 < a < afor all /o0, o2. 

PROOF. Since K and C depend only on the ratios x/s and A/s, and A/l/, 

Pr {K 1(x, s) c C, Ato, ov is a function of the parameters only through the ratio 
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FIG. 1 

Mola. There is therefore no loss of generality in assuming ao = 1, and = AO and 
we shall do so for the remainder of the proof. The theorem is clearly true if Moo = 0. 
Using symmetry there is then no loss of generality if we assume Mo > 0. 

Throughout the proof we will constaintly refer to figure one. In this figure the 
axes are x and s, Ao is the point (Mo, 0), the region contained in AjAoA2 is the ac- 
ceptance region K'. C is the region in B1OB2 , AoP I OB2, and AoC2 I OA . 

The condition c > k/[( l + k )2 _ 1] is precisely the condition which implies 
Z C2A0oC > 2. Z C2AOP. (" Z C2AoP" denotes the radian measure of the angle 
between C2Ao and AoP.) It follows that P E K and PC, PC2 and AXC ? AoC2 . 
The lines OB2 and AoA2 may intersect in a point Q2 as shown in Figure one or they 
mav not iintersect at all for s _ 0. If they do inot intersect for s _ 0, write 
A0Q2 = ?. In either case AoQ2> AoCj. When AOQ2 = oo the lines AoA1 and OB1 
nmay inltersect for some s > 0. Call the point of intersection Q, . As above, if there 
is Ino such intersectiotn we define AoC0 = c. 

We consider a system of polar coordinates in Figure one with Ao as its center, 
2 

i.e. r2 = (X-Mo)2 + S2 and tan 0 = s/( - uo). 
Since x, s are values of a random variable, ? and 0 may also be considered values 

of random variables whose probability density is 

f(r, 0) = atrn l(sin)n-2e-nr2 /2 ? > 0 0 < 0 ? . 

Henice the conditional density of the variables R, e given R = r is b(sin 0)n-2 

for 0 ? 0 < -r, and is independent of the given value of R. It follows that for all 
r > 0, Pr (K' IR = r) = 1 - a. (As before, K' denotes the complement of K.) 

Let 

pl(r) = (r(K' nCn{0:0 < ir/211R = r); 

P2(?) = Pr(Cn{0:0 _ ir/2}1R = r); 
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p3(r) = Pr (K' n C n {I: 0 > r/2} JR = r); 

p4(r) = Pr (C n {I:0 > 7r/2}1R = r); 

P(.) = [pl(r') + p3(r)]/[p2(r) + p4(?)] for r > AoP. 

(For r < AoP, pi(r) = 0, i = 1, 2, 3, 4; hence p(r) is undefined.) 
We need consider only the case r > AoP. For r ? AoC0 and r > AOQ1p4(r) = 

p3(r). For AoC, < r < AOQ1p3(r) = (1-(x)/2 andp4(r) _ 2. (Herewe use the 
fact that the conditional density of e is symmetric about 7r/2.) Hence 
p3(r)/p4(r) ? 1- a and p4(r) < <2 

Using Figure one and the expression for the conditional density of e given 
R = r we see that for r < AoC2, p1(r) = p2(r) = 0; for AoC2 < r < AoQ2, 
p1(r) > 0; and for r > AoQ2, pi(r) = (1 -a)/2 and 

P2(r) < bfco/t2-Ic(sin )-dO < 2 

It follows that there is an Ei > 0 such that p1(r)/p2(r) > 1 a- x + El whenever 
p2(r) $ 0. 

Note that AoC2 < AoCl and that p1(r) is strictly increasing for AoC2 < r < AOQ2 
and non-decreasing for all r > AoC2. Hence there is an E2 > 0 such that 
p3(r)/p4(r) < 1 implies p2(1r ) > E62 

Hence, using the above, either 
(i) p3(r)/p4(r) > 1 - a + el, in which case 

p(r) = [pi(r) + p3(r-)]/[p2(r) + p4(r)] > 1 a-a + el 

or (ii) 1-a <a p3(lr)/p4(r) and p2(1r ) > E2, in which case 

p(r) = [pi(r) + p3(r)]/[p2(r) + p4(r)] 

> [pl(r)/p2(r) + (1-a)p4(1r)/p2(?r)]/[l + p4(r)/p2(r)] 

> 1 - a + el/[l + p4(T )/p2(T )] > 1 - a + e 

where e = el/(l + 2/E2) > 0. 
Since Pr {K' I C} = E(p(r)) we have Pr {K' I C} > 1 - a + e which implies 

Pr { K I C} < a - e. This completes the proof of the theorem. 
Note that the conclusion of the theorem will clearly remain true even if the 

restriction c > k/[(k2 + 1)- 1] is somewhat relaxed, however some restriction 
on c is necessary, because c < k-1 implies Z AoClC2 > ir/2 which implies that the 
conditional significance level tends to one as to ---> *Z. 

3. Numerical results for n = 2. When n = 2 the distribution of x, s given r is 
uniform on the arc of radius r. The computation of p(r) then becomes a simple 
geometrical exercise. It can easily be checked that if c ? k- = tan air/2 then 
p(r) is non-increasing for r < OAo and non-decreasing for r > OAo . The minimum 
value of p(r) therefore occurs when r = OAo. If we then choose c to maximize 
this minimum value we find that for k > 3-i the appropriate choice of c is such 
that AoO = AoQ, i.e. c = k + (1 + k 2)1 = cot ar/4 > k1l. In this case p(AoO) = 
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min, p(r) = 1- a/(2 - a). Heiice, for example, for a = 2, k = 1 and c = 1 + 21. 
The conditional significance level is bounded above by 4. In general, the con- 
ditional significance level for a properly chosen c is bounded above by a number 
which is asymptotic to a/2 as a -> 0. It is not clear that we have obtained the 
best possible inequality in the sense that a slightly smaller choice of c may yield 
a smaller bound on the overall conditional probability (even though min 
p(r) < 1 - a/(2 - a)). For our choice of c the conditional level is exactly 
a/(2 - a), when luo = 0. (When uLo = 0, p(r) = 1 - a/(2 - a) for all r). In 
that sense our upper bound on the conditional level is sharp. 

In the less interesting case when k < 3-( a > 2) the best choice of c according 
to the above reasoning is c = k-1 = tan a7r/2. For this value of c, min, p(r) = 

(1 - a)/a, so that the conditional significance level is bounded above by 
(2a -1)/a < a (for a < 1). 
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